Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

$\mathrm{Bis}\left(\right.$ acetylacetonato- $\left.\kappa^{2} \mathrm{O}, \mathrm{O}^{\prime}\right)$ [copper(II)nickel(II)(0.31/0.69)]: a mixed-metal complex

Muhammad Shahid, ${ }^{\text {a }}{ }^{*}$ Mazhar Hamid, ${ }^{\text {a }}$ Muhammad Mazhar, ${ }^{\text {b }}$ Mohammad Azad Malik ${ }^{\text {c }}$ and James Raftery ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\text {c }}$ The School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, England
Correspondence e-mail: shahid_chme@yahoo.com

Received 26 June 2010; accepted 12 July 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.022 ; w R$ factor $=0.059$; data-to-parameter ratio $=17.0$.

The title complex, $\left[\mathrm{Cu}_{0.31} \mathrm{Ni}_{0.69}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$, was isolated from the reaction of $\operatorname{bis}(\mathrm{N}, \mathrm{N}$-dimethyaminoethanol)copper(II) with bis(acetylacetonato)nickel(II), which yielded crystals with mixed sites at the central metal position; the refined coppernickel occupancy ratio is 0.31 (4):0.69 (4). Two acetylacetonate ligands, related by a centre of symmetry, are coordinated to the central metal atom in a square-planar configuration while the methyne C atoms of the acetylacetonate ligands, ca $3.02 \AA$ away, are orthogonal to this plane at the metal site.

Related literature

For heterobimetallic complexes of copper and nickel, see: Hamid et al. (2006). For disorder in metal sites, see: Werndrup \& Kessler (2001). For applications of mixed-metal ceramic oxides, see: Auciello \& Ramesh(1996) and references therein. For mixed copper/nickel oxide catalysts, see: Kessler et al. (2001). For the synthesis of $\mathrm{Cu}(\text { dmae })_{2}$ (dmae $=N, N-$ dimethylaminoethanolato), see: Johnson et al. (2001). For the crystal structure of $\mathrm{Cu}(\mathrm{acac})_{2}(\mathrm{acac}=$ acetylacetonato $)$, see: LeBrun et al. (1986). For the crystal structure of $\mathrm{Ni}(\mathrm{acac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, see: Zhou et al. (2001). For the $\mathrm{O}-\mathrm{Cu} / \mathrm{Ni}-\mathrm{O}$ chelate bite angle in related complexes, see: Aruffo et al. (1983).

Experimental

Crystal data

$\left[\mathrm{Cu}_{0.31} \mathrm{Ni}_{0.69}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$
$V=535.76(9) \AA^{3}$
$M_{r}=258.40$
Monoclinic, $P 2_{1} / n$
$Z=2$
$a=10.265$ (1) A
Mo $K \alpha$ radiation
$b=4.6300$ (5) \AA
$\mu=1.87 \mathrm{~mm}^{-1}$
$c=11.2830$ (11) \AA
$T=100 \mathrm{~K}$
$\beta=92.431$ (2) ${ }^{\circ}$
$0.45 \times 0.45 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
3086 measured reflections 1242 independent reflections 1159 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
$T_{\text {min }}=0.487, T_{\max }=0.706$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022 \quad 73$ parameters
$w R\left(F^{2}\right)=0.059 \quad$ H-atom parameters constrained
$S=1.07$
1242 reflections
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Higher Education Commission of Pakistan for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2192).

References

Aruffo, A. A., Anderson, L. D., Lingafelter, E. C. \& Schomaker, V. (1983). Acta Crtyst. C39, 201-203.
Auciello, O. \& Ramesh, R. (1996). Editors. Special Issue on Electroceramic Thin Films, Parts I and II. MRS Bull. 21 (6,7).
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Hamid, M., Tahir, A. A., Mazhar, M., Zeller, M., Molloy, K. C. \& Hunter, A. D. (2006). Inorg. Chem. 45, 10457-10466.

Johnson, B. F. G., Klunduk, M. C., O’Connell, T. J. O., McIntosh, C. \& Ridland, J. (2001). J. Chem. Soc. Dalton Trans. pp. 1553-1555.

Kessler, G. V., Gohil, S., Kritikos, M., Korsak, N. O., Knyazeva, E. E., Moskovskaya, F. I. \& Romanovsky, V. B. (2001). Polyhedron, 20, 915-922.
LeBrun, P. C., Lyon, W. D. \& Kuska, H. A. (1986). J. Crystallogr. Spectrosc. Res. 6, 889-893.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Werndrup, P. \& Kessler, V. G. (2001). J. Chem. Soc. Dalton Trans. pp. 574-579.
Zhou, X.-F., Han, A.-J., Chu, D.-B. \& Huang, Z.-X.(2001). Acta Cryst. E57, m506-m508.

supplementary materials

Bis(acetylacetonato- $\left.\boldsymbol{\kappa}^{\mathbf{2}} \boldsymbol{O}, O^{\prime}\right)[\operatorname{copper}($ II $)$ nickel(II)(0.31/0.69)]: a mixed-metal complex

M. Shahid, M. Hamid, M. Mazhar, M. Azad Malik and J. Raftery

Comment

Heterobimetallic complexes of copper and nickel have already been reported as precursors for chemical vapor deposition of ceramic material thin films (Hamid et al., 2006). Mixed metal ceramic oxides have multiple compositions and crystal structures, which results in a diversity of properties leading to a vast variety of potential applications (Auciello et al., 1996, and references therein). For example, a mixed copper/nickel oxide catalyst was deposited on a zeolite support and was shown to have extremely high activity towards methanol oxidation (Kessler et al., 2001).

The title complex was synthesized by the reaction of Cu (dmae) $)_{2}$ (dmae $=\mathrm{N}, \mathrm{N}$-dimethylaminoethanolato) (Johnson et al., 2001) with $\mathrm{Ni}(\mathrm{acac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (acac $=$ acetylacetonato) in toluene. In contrast to the formation of the oligomeric bimetallic complex (Hamid et al., 2006), the title compound crystallized out with the central position partially occupied by Cu and partially by Ni , with a refined $\mathrm{Cu}: \mathrm{Ni}$ occupancy ratio of 0.31 (4):0.69 (4). A similar type of disorder in the metal site was observed previously in $\mathrm{Ni}\left(\mathrm{Ni}_{0.25} \mathrm{Cu}_{0.75}\right)_{2}\left(\mu_{3}-\mathrm{OH}\right)(\mu-\mathrm{OAc})_{2}\left(\eta^{1}-\mathrm{OAc}\right)_{2}\left(\mu, \eta^{2}-\mathrm{ORN}\right)_{2}\left(\eta^{2}-\right.$ $\left.\left.\left.\mathrm{R}^{\mathrm{N}} \mathrm{OH}\right)\right]\left[\mathrm{R}^{\mathrm{N}}-\mathrm{OH}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)(\mathrm{CHOH}) \mathrm{CH}_{3}\right)\right]($ Werndrup et al., 2001), where the two metal sites were occupied by 75% Cu and $25 \% \mathrm{Ni}$. The distribution of two metals at the central position in the title complex is random which means some of the molecules would have each of the two Cu and Ni atoms, or in other words if we consider it to be systematic, in every molecule the position will be occupied by exactly 0.31 Cu and 0.69 Ni atoms.

The molecular structure of the title complex is shown in Figure 1. The geometry of the title complex is square planer, similar to that of $\mathrm{Cu}(\mathrm{acac})_{2}$ (LeBrun et al., 1986) where two ligands coordinate to the metal atom in the same plane, while in the nickel(II) complex, $\mathrm{Ni}(\mathrm{acac})_{2}$ (Zhou et al., 2001), which crystallized with two coordinated water molecules, the metal has an octahedral coordination sphere. The metal to oxygen (O1, O2) bond distances [1.9196 (10) and 1.9225 (10) Å] are slightly longer than those in $\mathrm{Cu}(\mathrm{acac})_{2}\left[1.914\right.$ (4), 1.914 (4) \AA] but shorter than the average value found in $\mathrm{Ni}(\mathrm{acac})_{2}$ [2.0147 \AA]. The $\mathrm{O}-\mathrm{Cu} / \mathrm{Ni}-\mathrm{O}$ chelate bite angle is $93.72(4)^{\circ}$ which is comparable to that found in $\mathrm{Cu}(\mathrm{acac})_{2}\left[93.2(2)^{\circ}\right]$ and other complexes of this type (Aruffo et al., 1983). The chelate bite angles are of course larger than those in the octahedral nickel(II) complex mentioned above [91.65 (8) $\left.{ }^{\circ}, 89.99(8)^{\circ}\right]$.

Experimental

$\operatorname{Bis}\left(N, N\right.$-dimethylaminoethanolato $\left.{ }^{2} \mathrm{O}, \mathrm{N}\right)$ copper(II) $(0.5 \mathrm{~g}, 2.1 \mathrm{mmol})$ and bis(acetylacetonato $\left.\kappa^{2} \mathrm{O}^{\prime} \mathrm{O}^{\prime}\right)$ nickel(II) (0.54 $\mathrm{g}, 2.1 \mathrm{mmol}$) were reacted in 20 ml toluene as a solvent. After stirring for two hours, the solution was cannula filtered to remove unreacted reagents. Slow evaporation of the filtrate gave block-like blue crystals, suitable for single-crystal X-ray analysis, after two weeks.

supplementary materials

Refinement

The H-atoms were included in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95(\mathrm{CH}), 0.99\left(\mathrm{CH}_{2}\right) \& 0.98\left(\mathrm{CH}_{3}\right) \AA$, with $U_{\text {iso }}(\mathrm{H})=\mathrm{k}$ $\times U_{\text {eq }}(\mathrm{C})$, where $\mathrm{k}=1.5$ for $\mathrm{CH}_{3} \mathrm{H}$-atoms and 1.2 for all other H -atoms.

The occupancy of the metal site was examined under three assumptions: All Ni gave R1 ($>4 \mathrm{sig}$) $=0.0227, \mathrm{R} 1$ (all) $=0.0243$; All Cu gave $\mathrm{R} 1(>4 \mathrm{sig})=0.0236, \mathrm{R} 1(\mathrm{all})=0.0252$. Variable $\mathrm{Ni}: \mathrm{Cu}$ ratio [which converged to 69 (4):31 (4)] gave $\mathrm{R} 1(>4 \mathrm{sig})=$ $0.0221, \mathrm{R} 1($ all $)=0.0238$. Elemental analysis of the $\mathrm{Cu} / \mathrm{Ni}$ with a ICP-OES Fisons Horizon Spectrometer has: ratio $\mathrm{Cu}: \mathrm{Ni}$ ($31: 69$); Cu calulated 7.62% : found 7.86%; Ni calculated 15.68% : found 15.23%. The agreement is surprisingly good considering that Cu and Ni differ by only one electron.

Figures

Fig. 1. View of the molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.

Bis(acetylacetonato- $\left.\kappa^{\mathbf{2}} O, O^{\prime}\right)$ [copper(II)nickel(II)(0.31/0.69)]

Crystal data
$\left[\mathrm{Cu}_{0.31} \mathrm{Ni}_{0.69}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=258.40$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=10.265$ (1) \AA
$b=4.6300(5) \AA$
$c=11.2830(11) \AA$
$\beta=92.431$ (2) ${ }^{\circ}$
$V=535.76(9) \AA^{3}$
$Z=2$
$F(000)=269$
$D_{\mathrm{x}}=1.602 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2222 reflections
$\theta=2.6-28.2^{\circ}$
$\mu=1.87 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, blue
$0.45 \times 0.45 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)

1242 independent reflections
1159 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-9 \rightarrow 13$
$T_{\min }=0.487, T_{\max }=0.706$
3086 measured reflections
$k=-6 \rightarrow 5$
$l=-13 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.059$
$S=1.07$
1242 reflections
73 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0305 P)^{2}+0.3448 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.37$ e \AA^{-3}
$\Delta \rho_{\min }=-0.35$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$	Occ. (<1)
C1	$0.81881(15)$	$0.5644(4)$	$0.55275(14)$	$0.0207(3)$	
H1A	0.8798	0.4228	0.5220	0.031^{*}	
H1B	0.8547	0.6431	0.6279	0.031^{*}	
H1C	0.8056	0.7213	0.4952	0.031^{*}	
C2	$0.69044(14)$	$0.4199(3)$	$0.57303(13)$	$0.0167(3)$	
C3	$0.61101(16)$	$0.5306(3)$	$0.65990(14)$	$0.0184(3)$	
H3	0.6416	0.6941	0.7037	0.022^{*}	
C4	$0.48909(14)$	$0.4159(3)$	$0.68655(13)$	$0.0170(3)$	
C5	$0.41401(16)$	$0.5520(4)$	$0.78376(14)$	$0.0219(3)$	
H5A	0.3603	0.7100	0.7508	0.033^{*}	
H5B	0.4751	0.6279	0.8452	0.033^{*}	$0.69(4)$
H5C	0.3578	0.4065	0.8186	0.033^{*}	$0.31(4)$
Ni1	0.5000	0.0000	0.5000	$0.01368(10)$	
Cu1	0.5000	0.0000	0.5000	$0.01368(10)$	
O1	$0.66241(10)$	$0.2061(2)$	$0.50564(9)$	$0.0185(2)$	
O2	$0.43456(10)$	$0.2013(2)$	$0.63411(9)$	$0.0182(2)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0171(7)$	$0.0222(7)$	$0.0229(7)$	$-0.0021(6)$	$0.0022(6)$	$-0.0017(6)$
C 2	$0.0168(7)$	$0.0163(7)$	$0.0170(7)$	$0.0004(6)$	$-0.0016(5)$	$0.0029(5)$
C 3	$0.0196(7)$	$0.0186(7)$	$0.0172(7)$	$-0.0019(6)$	$0.0008(5)$	$-0.0023(5)$
C 4	$0.0192(7)$	$0.0167(7)$	$0.0151(7)$	$0.0016(6)$	$0.0008(5)$	$0.0013(5)$
C 5	$0.0228(8)$	$0.0230(8)$	$0.0204(7)$	$-0.0013(6)$	$0.0058(6)$	$-0.0039(6)$
Ni 1	$0.01363(14)$	$0.01262(15)$	$0.01500(15)$	$-0.00132(9)$	$0.00309(9)$	$-0.00194(9)$
Cu 1	$0.01363(14)$	$0.01262(15)$	$0.01500(15)$	$-0.00132(9)$	$0.00309(9)$	$-0.00194(9)$
O 1	$0.0179(5)$	$0.0171(5)$	$0.0207(5)$	$-0.0008(4)$	$0.0029(4)$	$-0.0019(4)$
O 2	$0.0188(5)$	$0.0165(5)$	$0.0195(5)$	$-0.0015(4)$	$0.0037(4)$	$-0.0015(4)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.504(2)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9800
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800
$\mathrm{C} 2-\mathrm{O} 1$	$1.2737(18)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.399(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.404(2)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{O} 2$	$1.2737(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$125.43(14)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$115.60(13)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.95(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$124.25(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	117.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	117.9
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$125.02(14)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$115.87(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.10(14)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.64(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$-1.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.91(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1-\mathrm{Ni} 1$	$4.2(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1-\mathrm{Ni1}$	$-174.11(10)$

$\mathrm{C} 4-\mathrm{C} 5$	$1.505(2)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9800
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9800
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.9800
$\mathrm{Ni}-\mathrm{Ol}^{\mathrm{i}}$	$1.9196(10)$
$\mathrm{Ni} 1-\mathrm{O} 1$	$1.9196(10)$
$\mathrm{Ni}-\mathrm{O} 2^{\mathrm{i}}$	$1.9225(10)$
$\mathrm{Ni} 1-\mathrm{O} 2$	$1.9226(10)$

C4-C5—H5A 109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \quad 109.5$

H5A-C5-H5B 109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \quad 109.5$
H5A-C5-H5C 109.5
$\mathrm{H} 5 \mathrm{~B}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \quad 109.5$
O1 ${ }^{\text {i }}-\mathrm{Ni} 1 — \mathrm{O} 1 \quad 179.999$ (1)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{i}} \quad 93.72$ (4)
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 2^{\mathrm{i}} \quad 86.28$ (4)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 2 \quad 86.28$ (4)
$\mathrm{O} 1 — \mathrm{Ni1}-\mathrm{O} 2 \quad 93.72$ (4)
$\mathrm{O}^{2}-\mathrm{Ni} 1-\mathrm{O} 2 \quad 180.0$
C2—O1—Ni1 125.45 (10)
$\mathrm{C} 4-\mathrm{O} 2 — \mathrm{Ni1} \quad 125.62$ (9)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 2 \quad 172.90$ (12)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 2 \quad-7.10(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2-\mathrm{Ni} 1 \quad-4.3$ (2)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 2-\mathrm{Ni1} \quad 175.47$ (10)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 2-\mathrm{C} 4 \quad-172.85$ (12)
$\mathrm{O} 1-\mathrm{Ni1}-\mathrm{O} 2-\mathrm{C} 4 \quad 7.15(12)$

sup-4

supplementary materials

$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 2 \quad \mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 2-\mathrm{C} 4 \quad 98$ (29)
Symmetry codes: (i) $-x+1,-y,-z+1$.

Fig. 1

